NIVERSITA
| TRENTO

Department of Information Engineering and Computer Science

Bachelor’s Degree in
Computer Science

FINAL DISSERTATION

HYPERGRAPH SUMMARIZATION

Node aggregation-based method addressed with motifs analysis

Supervisor Student
Alberto Montresor Stefano Genetti
Quintino Francesco Lotito

Academic year 2021/2022

Acknowledgements

I dedicate this work to my mother Alessandra and my father Roberto. Their affection has pro-
foundly encouraged me in achieving my scholastic and academic results. I love you.

I dedicate this work to Elisabetta and Aurora. I wish you all the best.
I dedicate this work to my cousins Massimo, Lia, Alessandro, Anna, Serena, Francesco, Emanuele,
Marco, Gabriele, Camilla, Giacomo, Isabella, Beatrice, Sara, Steven, Jessica, Danilo, Gianluca, my

uncles and aunts Francesca, Luciano, Beniamino, Grazia, Enrico, Lucia, Mario, Nicoletta, Fabrizio,
Luisa, Ferdinando, Patrizia, Vito, Sonia, Giorgio.

I thank professor Alberto Montresor for giving me the opportunity to contribute to this research
project.

I thank Francesco Lotito for supporting me with the work.

I thank Luisa for her invaluable help.

I thank my University friends, Erica, Fabrizio, Francesco, Giovanni, Laurence, Matteo, Pietro,
Simone, Vittoria, for their sympathy, their smiles, their important support and their precious advice.

Contents

Abstract

1 Complex networks
1.1 Basicconcepts e
1.2 Measures, properties and applications L.

2 Beyond pairwise interactions
2.1 Modeling higher-order interactions Lo oL
2.2 Hypergraph representations and measures
2.3 Applications L

3 Higher-order network motifs
3.1 Network motifs e
3.2 Higher-order motif analysis in hypergraphs

4 Graph summarization
4.1 Graph summarization methods Lo
4.2 Graph summarization benefits and applicationso
4.3 GraSS: Graph Structure Summarization L.

5 Hypergraph summarization

5.1 Node aggregation-based hypergraph summarization

5.2 Query answering according to expected value semantics

5.3 Summary quality evaluation

5.4 Results. . . . o o
5.4.1 Dataset PACS e e
5.4.2 Dataset conference
5.4.3 Dataset Facebook-known-pairs_data_2018,
5.4.4 Correlation between degree centrality and average degree centrality error

6 Conclusion and future work
Bibliography

A Algorithms

Ao

N o O,

co Qo

11
11
13
15

17
17
18
22
24
25
26
27
28

30

30

33

Abstract

Complex networks are systems made up of a large number of units interconnected by non-trivial
patterns of interactions. Multidisciplinary researchers use networks in order to study complex systems.
A complex system is a system made by a large number of single units (individuals, components or
agents) interacting in such a way that the behaviour of the system is not a simple combination of the
behaviours of the single units. In particular, some collective behaviours emerge without the need for
any central control. In order to understand the relevance of networks, it is sufficient to think for a
moment about the fascinating fact that actually complex networks are all around us. Social systems,
the human brain, the Internet and the World Wide Web are all examples of complex networks. Finally,
it is not difficult to understand that they have become one of the hottest research fields in science. In
fact, if we want to master the interconnected world we live in, we need to understand the structure of
the networks around us.

Networks have originally been understood as a collection of nodes, representing elementary
units of the system, and edges, describing the existence of interactions between pairs of such units.
Applications to real-world systems, however, require the possibility to describe more details of an
interaction, like for example: directed edges to describe the origin and destination of a message;
edge weights, to highlight the intensity of an interaction. In more recent years, mathematical tools
have been formalized and developed to analyze temporal networks, where interactions are not static
but unfold in the temporal dimension. Similarly, many works have recently considered the case of
interacting systems where units can be connected by links of different nature, and which can be
effectively represented in terms of multilayer networks.

Although over the past decades, a great variety of complex systems have been successfully
described with these kind of models, in face-to-face human communication, chemical reactions and
ecological systems, interactions can occur in groups of three or more nodes and cannot be simply
described just in terms of simple dyads. As a consequence, mathematical frameworks have been
proposed in order to describe group interactions explicitly and naturally. Simplicial complexes and
hypergraphs are the natural candidates to provide such descriptions.

In parallel, while advances in computing resources have made processing enormous amounts of
data possible, human ability to identify patterns in such data has not scaled accordingly. Efficient
computational methods for condensing and simplifying data are thus becoming vital for extracting
actionable insights. With this in mind, summarizing interconnected data, or graphs, become popular.
Graph summarization has various benefits which include for example reduction of data volume and
storage or speedup of graph algorithms and queries. Given its advantages, graph summarization
has extensive applications, including clustering, classification, community detection, outlier detection,
pattern set mining, finding sources of infection in large graphs, and visualization, among others.
Consequently the problem of graph summarization has been studied algoritmically in the fields of
graph mining and data management, while interactive exploration of the data and appropriate display
layouts have been studied in visualization.

However, the literature still lacks of an extension of practical summarization procedures to the
higher-order domain. In this work we propose an algorithmic solution to the problem of hypergraph
summarization. Our aim is to extend a node aggregation-based graph summarization method to the
case of higher order interactions implemented with the hypergraph mathmatical formalism. At the
hearth of our algorithm is the condensation of hypergraph nodes into summarized supernodes. We

have identified as proper supernode candidates the fundamental building blocks of networks: higher-
order motifs. These are small patterns of higher-order interactions in a network that are statistically
over-represented with respect to a null model. The process of summarization, by definition, removes
some information from the original data structure. Intuitively, this introduces some uncertainty into
any query or analysis that takes the summarized hypergraph as input. To address this problem, we
propose formal probabilistic semantics for evaluating structural queries on hypergraph summaries.
Motivated by the above, we also study the problem of finding a ”good” hypergraph summary. In our
problem setting, we present metrics to measure the quality of a summary by the extent to which it
alters the results of queries. Finally, we propose a Python implementation which has been tested on
a number of real-world datasets coming from different domains. We identify different heuristics to
reshape our greedy solution to perform better according to the different dataset characteristics.

This thesis is organized as follows:
e At the beginning we give a brief overview of the recent domain of network science.

e We discuss the limitations of network models able to encode only pairwise interactions, and give
a short illustration of the mathematical frameworks to model group interactions.

e After that, we present the solutions introduced by Quintino Francesco Lotito et al. in the paper
Higher-order motif analysis in hypergraphs to perform higher-order motif discovery [13].

e At this point, we provide a synthetic overview of the state-of-the-art methods proposed by the
literature for summarizing graph data. In particular, we strain the attention on a representative
node aggregation-based summarization algorithm put forward by Kristen LeFevre and Evimaria
Terzi called GraSS (Graph Structure Summarization).

e Then we propose our contribution to the novel problem of hypergraph summarization.

e We evaluate our solution on a number of real-world datasets from different domains. In order
to obtain better results, we show some heuristics which have revealed to be adapted for certain
frameworks.

e We conclude the thesis discussing briefly about future research directions.

1 Complex networks

The purpose of this chapter is to provide an introduction to some fundamental principles of

network science. For the sake of clarity and completeness, we also introduce graph theory which is
the branch of mathematics that deals with the study of graphs, which in turn are the mathematical
objects used to represent networks.
The study of networks to understand complex systems made of interacting entities, stands out for
its interdisciplinary nature, the generality of the results obtained, and the wide variety of possible
applications. We present some properties which are commonly taken into consideration when analyzing
a complex network.

1.1 Basic concepts

Imagine to be a small curious fly which is flying around a university. In the morning, before
the start of the lessons, you observe that students, researchers, professors and other people start to
populate the structure. They start to talk in small groups, usually of two people, then the groups grow
in size, they split, merge again, change shape. Some of the people move from one group to another.
Some of them know each other already, while others are introduced by mutual friends. What is

3

Py
G sz

s s
T

s o113 207208

o 2508155
ol 205 230 K5 vr2

Figure 1.1: Partial map of the Internet based on the January 15, 2005 data found on [26]. Each line
is drawn between two nodes, representing two IP addresses. The length of the lines are indicative of
the delay between those two nodes. Figure from [29)].

more, you could notice that we can somehow partition the groups into communities, since for example
professors and administrative staff members do not typically join students’ groups. Furthermore each
person is different from the others. Hence, some individual are more lively and tend to attract the
attention of other people. On the other hand, others are more shy: they stay in smaller groups and
prefer to listen to the others. Perhaps you also notice someone in front of a coffee machine. In this
room people are organized into more or less regular queues, so that the shape of this groups is different.
The social system we have just considered is a typical example of what is known as a complex system:
a system made by a large number of single units (individuals, components or agents) interacting in
such a way that the behaviour of the system is not a simple combination of the behaviours of the
single units. With this definition in mind, we clearly understand that complex systems are all around
us, permeate all aspects of our life and constitutes the backbone of our modern world.

Over the years, science has abandoned the idea that the collective behaviour of a complex system
can be simply understood and predicted by considering the units of the system in isolation [4]. Within
this paradigm, networks have emerged as a reference modeling tool for complex systems [1]. The
natural framework for the exact mathematical treatment of a complex network is a branch of discrete
mathematics known as graph theory and in particular the concept of graph. Graphs are used to
represent sets of objects and pairwise interactions among them. This mathematical framework is well
established, since a lot of problems can be abstracted in terms of graphs.

1.2 Measures, properties and applications

Over the years, the literature has come up with quantitative measures and has highlighted
interesting features in order to understand the behaviour and the peculiarities of these complex systems
made of interacting entities. For instance, if we look at the connections between the neurons in
the brain and construct a similar network whose nodes are neurons and the links are the synapses
which connect them, we find that such a network has some special mathematical properties which are
fundamental for the functioning of the brain. For instance, it is always possible to move from one
node to any other in a small number of steps, and, particularly if the nodes belong to the same brain
area, there are many alternative paths between them [9].

Commonly used parameters to study complex system are centrality measures. Network centralities

4

are node-related measures that quantify how ”central” a node is in a network. There are many ways,
in which a node can be considered so: for example, it can be central if it is connected to many other
nodes. This is the case of degree centrality. This quantity corresponds to nodes’ degree. The degree
of a vertex v, is the number of neighbors of v. Intuitively, the higher the degree of a node, the more
sources of information it has available, and the quicker the information will reach the node, so the
more central it is.

Interestingly, most of networks in nature, from social to biological networks, display non-trivial
topological features that cannot usually be reproduced by random networks [6].

Scale-free networks The World Wide Web can be represented with a network quite naturally.
The vertices of this network are webpages, while the directed links represent hyperlinks pointing from
one document to another. Clearly, this is a perfect example of a self-organised technological system:
the topology is the result of billions of agents acting independently, so there are no a priori reasons to
find large deviations from a random graph. However, the degree distributions of the WWW are totally
different from that of a random graph. In fact, in the WWW, most vertices are sparsely connected,
while a few vertices have an extremely large number of links and therefore play a crucial role for the
functionality of the network. In particular, it has been shown that the degree distribution of this
network is scale-free, i.e. the probability p; that a network node has degree k follows a power-law
distribution. Interestingly, scale-free functions are ubiquitous in nature and in made-man systems.
In fact, the distributions of a wide variety of physical, social and biological phenomena can be well
approximated by a power law over a wide range of magnitudes [9)].

Small-World networks In our life experience, sometimes we discover that we unexpectedly share
a common acquaintance with strangers. This is the so called small-world property of networks, for
which most nodes are not neighbors of one another, but the neighbors of any given node are likely to
be neighbors of each other and most nodes can be reached from every other node by a small number of
steps. This behaviour is not just a feature of social systems, but can also be found in neural networks
of different organisms, and in other biological and man-made networks [9].

Community structure Real-world networks nodes are often organised into communities, i.e.
clusters of nodes such that nodes within the same cluster are more tightly connected that nodes be-
longing to two different clusters. In such cases we say that the networks have a community structure.
The most important point is that nodes in the same network cluster usually share common features.
For example tightly connected groups of nodes in the World Wide Web correspond to pages on com-
mon topics [9].

2 Beyond pairwise interactions

The concept of network which has been introduced in Chapter 1 has been successfully adopted

in vast applications in various domains. However, this model leads quite often to a simplified repre-
sentation of reality. The fundamental limit of networks is that they capture pairwise interactions only,
while many systems display group interactions. Indeed, in social systems, ecology and biology among
other examples, many connections and relationships are collective actions at the level of groups of
nodes. For instance, three or more species routinely compete for food and territory in complex ecosys-
tems [4].
In this chapter we present mathematical frameworks which have been theorized to overcome this
limitation, allowing an explicit representation of higher-order systems. In particular we focus on the
hypergraph model, providing an overview about the ways it can be described and represented. In ad-
dition, we discuss some measures that can be used to characterize and quantify structural properties
of this data structure. Finally, we provide possible applications of these notions in order to detail a
high-order interacting system.

Allison

Party 1
Drew
Eliot

Party 2 Party 1 R
Keith 6 Party 2
Ross

Party 3
Sarah Party 3

(a) Bipartite graph (b) Hypergraph

Figure 2.1: Parallel between the framework of the bipartite graphs (a) and the formalism of the
hypergraphs (b). Both model the same system, however hypergraphs explicitly model higher-order
interactions and bipartite graphs need to introduce new accessory nodes. Picture from [4].

2.1 Modeling higher-order interactions

So far we have understood how interactions can describe different situations in real systems. Formally,
we define an interaction as a set I = [pg, p1, ..., pk—1] containing an arbitrary number k of basic elements
of the system under study, which we indicate as nodes or vertices. Up to this point, we have taken into
consideration only low order systems in which only self or pair-wise interactions take place. However,
in many circumstances, it is more convenient to represent a complex network by means of higher-order
systems (hereafter usually referred to as HOrSs) which display interactions in groups of more than
two elements.

We define an interaction system (V,I) as the family of interactions I = {Iy, ..., I,,} taking place on
a node set V. To aid the intuition, let us make a specific example. Consider the set of friends
V = [Allison, Drew, Eliot, Keith, Ross, Sarah] and the set of interactions I = {[Allison, Ross, Sarah],
[Drew, Eliot, Ross, Sarah], [Ross, Keith, Eliot, Allison]|}. Perhaps, each interaction abstracts a party
attended by the involved vertices. Actually, we cannot capture the properties of this interacting system
through a graph representation, since it is impossible to explicitly describe group interaction.

Bipartite graphs are an effective way to describe group relationships within the realms of low-
order interactions. A bipartite graph is a graph whose vertices can be divided into two disjoint sets
U and W; the edgeset E contains only edges (u,w) such that uw € U and w € W. To represent
higher-order interactions, one chooses U to coincide with the original nodeset V', i.e. U =V, and W
to coincide with the set of interactions I. The links in the bipartite graph connect a node (in V') to the
interactions in which it takes part (Figure 2.1). Clearly with this approach the entire information is
preserved. However, the nodes of the original system do not interact directly with each other anymore.
Rather, their relation is always mediated by the interaction layer, which is of a different nature from
the node layer itself. This constitute an additional complexity which needs to be taken into account
when applying this formalism.

Hypergraphs provide the most general and unconstrained description of higher-order interactions.
Formally, a hypergraph is a pair H = (V, E) where V is the set of the vertices and E C P(V) is the
set of the hyperedges. A hyperedge e is a subset of the power set of V', and can link any number of
vertices. Each hyperedge specifies which nodes partecipate in which way within an interaction. As
shown in Figure 2.1, this formalism is definitely the most natural and appropriate way to describe our
toy example of interacting system.

Party 1 Party 2 Party 3 Allison Drew Eliot Keith Ross Sarah
Allison 1 0 1 Allison 0 0 1 il 2 il
Drew 0 1 0 Drew 0 0 1 0 1 1
Eliot 0 1 1 Eliot 1 1 0 1 2 1
Keith 0 0 1 Keith 1 0 1 0 1 0
Ross 1 1 1 Ross 2 1 2 1 0 2
Sarah 1 1 0 Sarah 1 1 1 0 2 0
(a) Incidence matrix (b) Adjacency matrix

Figure 2.2: Matrix representations of the interacting system illustrated in Figure 2.1

2.2 Hypergraph representations and measures

In the interest of applying hypergraphs to understand complex systems made of interacting
entities and to make predictions about future states, it is crucial to introduce novel representations
and significant measures to exploit interesting properties.

The definition of incidence matrix can be easily extended to the case of higher-order interactions.
In the case of hypergraphs, we define the incidence matrix as a n x m matrix I, where n is the total
number of nodes, while m is the number of hyperedges. The entry I;, in row ¢ and column « is 1 if
node ¢ belongs to interaction «, and zero otherwise.
Similarly to the case of common graphs, hypergraphs can further be properly detailed by means of
an adjacency matrix A. While for simple graphs there can be at most one edge connecting a pair of
nodes i and j, for HOrSs there can be more than one hyperedge a containing the two nodes. The
adjacency matrix of a HOrS is then a n X n matrix whose elements a;; are the number of hyperedges
that contain both ¢ and j.

Perhaps the degree of the nodes and the order of the hyperedges, are the first measures one can

use to study the properties of HOrSs. The degree d(v) of a vertex v is the number of edges that
contain it. On the other hand the order, usually referred also as size of a hyperedge e, corresponds
to the number of vertices linked by e.
In addition to these local measures, it is useful to introduce also the concept of intersection profile.
From the incidence matrix I, one can define the intersaction profile of a HOrS as P = I, which is an
m X m matrix, whose elements P,5 count the number of vertices in common between two hyperedges
« and 8 and m is the number of hyperedges.

2.3 Applications

Non-pairwise interactions are common in various types of systems in the real world. For in-
stance, modeling higher-order interactions can play a key role in studying ecological networks, in
which groups of more than two species compete for a common prey [11]. Furthermore, we can adopt
the formalisms introduced in this chapter to map higher-order correlations in neuronal functional pat-
terns [24]. In particular, scientists have realized the importance of hypergraphs to describe affiliation
data [27]. Affiliation networks, also known as membership networks, are social networks representing
the affiliation of a set of n actors to a set of m events, or social occasion. Hence, the case illustrated
in Figure 2.1, is an example of affiliation network. Authorship of scientific articles is a particularly
interesting type of affiliation networks. In this case, the two sets of nodes represent scientists and
their publications, respectively. About this domain, Quan Xiao points out the modelling limitations
of traditional networks based on classical graph theory with the increase in network complexity [31].
Indeed, co-authored publications often involve groups of authors rather than just two. As a result,
representing collaborations with ordinary network such that all nodes are connected with each other,
inevitably leads to loss of information. Actually, in this case, it is difficult to distinguish whether it is
co-author in pairs or multi-author collaboration. With the aim of describing this scenario, Quan Xiao
proposes Figure 2.3 [31].

Figure 2.3: wvy,v9,v3,u4,v5 are five authors of papers. (a) In this case each two of the five authors
collaborated, as a result 10 papers are written totally; (b) Five authors writing one paper collabora-
tively; (c) In this case each two of the five authors collaborated, and the five authors wrote one paper
collaboratively, and what is more, authors 1, 2, and 3 wrote another paper collaboratively. Figure
from [31].

3 Higher-order network motifs

While many networks in nature share some global properties such as power-law degree distribu-
tions, small-world property and community structure, networks from different domains tend to display
differences in their local structure. In this chapter, we introduce the notion of networks motifs, pat-
terns of connectivity at the network microscale.

In what follows we discuss the results obtained by Lotito et al. with the aim of extending the concept
of motif in order to characterize the local structure of systems that involve group interactions [13].

3.1 Network motifs

So far we have written about methods to analyse complex networks by means of global features.
In 2002, Milo et al. introduced the notion of network motifs in order to characterize the local structure
of complex networks. Network motifs are small patterns of interactions that appear in an observed
network at a frequency that is statistically-significantly higher than in a randomized network [18].
In their work, Milo et al. developed an algorithm for detecting network motifs and applied it to
several networks from biochemistry (transcriptional gene regulation), ecology (food webs), neurobi-
ology (neuron connectivity), and engineering (electronic circuits, World Wide Web). Each network
was scanned for all possible n-node subgraphs, and the number of occurrences of each subgraph was
recorded. They analyzed only small patterns of interactions (n = 3,4), since overall the enumeration
problem of all the connected size-n subgraphs of a network is very expensive from a computational
point of view. Their work starts taking into consideration complex systems where interactions can be
conveniently represented by directed edges between nodes (Figure 3.1 A). In the paper they report 13
types of three-node connected subgraphs which have been considered in this process (Figure 3.1 B).

According to the definition provided at the beginning of this section, when evaluating the over-
or under-expression of each motif in a network, we need to compare their occurrences in real-world
networks with respect to an ensemble of randomized networks. To generate this latter we rely on a
model known in the mathematical literature as the configuration model. The configuration model is a
method to describe ensembles of random graphs with /N nodes, K edges, and a given degree sequence,
so that the degree of each node is predefined. This technique allow us to reproduce the single-node
statistics of the observed network of our interest.

In practice, a simple way to generate a graph in the ensemble defined by a given degree sequence
K = {ki, ko, ...,kn}, consists in assigning to each node i a number of half-edges, also known as stubs,

8

A

transcription neuron synaptic ecological
network connection network food web

X Y X D Y
=% 2| C=C= B

genex geney

B
[[[D

Figure 3.1: (A) Examples of interactions represented by directed edges between nodes. (B) All 13
types of three-node connected subgraphs. Figure from [18].

X"Y represents

equal to its degree k;. A graph in the ensemble is then formed by matching, at random with uniform
probability, pairs of half-edges together, until all K edges of the graph are formed.

The statistical measures commonly used to evaluate the significance of the number of motifs occur-
rences with respect to an ensemble of randomized networks, are the z-score (Z;), the relative abundance
(A;) and the Significance Profile (SP?).

Nreali - <Nrandi> SPA _ Az

N'reali - <Nrand¢> +e€ ’ ! /Z AZQ

In both the equations i refers to the i-th motif; Ny.4, is the number of times subgraph type ¢

appears in the network; (Ny4nq,) is the mean of its appearances in the randomized network ensemble;
std(Nyand,) is the standard deviation of its appearances in the randomized network ensemble; € ensures
that |A| is not misleadingly large when the subgraph appears very few times in both the real and
random networks; SP is a normalized vector made of the statistical measures related to each motif.
These quantities can be used in order to compare the local structure of networks from different fields.
This analysis can reveal the emergence of ”superfamilies” of networks, meaning clusters of networks
which display similar local structure. This suggests that motifs can define broad classes of networks,
each with specific types of elementary structures. Indeed, motifs reflect the underlying processes that
generated each type of network; for example, food webs evolve to allow a flow of energy from the
bottom to the top of food chains, whereas gene regulation and neuron networks evolve to process
information. Actually, information processing seems to give rise to significantly different structures
than does energy flow [17].
An exemplification of this concept is illustrated in Figure 3.2. The chart illustrates the SP of the 13
possible directed connected triads for networks from two different fields. The first one represents three
WWW networks of hyperlinks between Web pages related to university, literature, or music. The
second domain is about three social networks in which nodes represent people in a group and edges
represent positive sentiment directed from one group member to another, based on questionnaires.
Notably, in both cases triads 9, 10, 12, 13 occurs more frequently, on the other hand triads 4, 5,
6 are more infrequent. This similarity between World Wide Web and social networks suggests that
they belong to the same ”superfamily” and as a consequence classical models of social structural
organization may also be used to understand WWW structure.

Zi _ Nreali - <Nrcmdi> : Az _
Std(Nrcmdi)

3.2 Higher-order motif analysis in hypergraphs

In the paper Higher-order motif analysis in hypergraphs [13], Lotito et al. propose a generaliza-
tion of the notion of motifs to the framework of the higher-order networks represented by hypergraphs.
Higher-order network motifs are small patterns of higher-order interactions that appear in an observed
hypernetwork at a frequency that is statistically-significantly higher than in a randomized hypernet-

9

= WWW-1 N=325,729

05 "
" www.a r /N o7 & WWW-2 N=277,114
\ . _ = - WIWW-3 N=47.670
OO | s 1 == S =
05 5 N/ + SOCIAL-3 N=32
1 2 3 10 11 12 13
2 AAD OBy
\/ VATV

Figure 3.2: SP of the 13 possible directed connected triads for networks from different fields: WWW
hyperlinks between Web pages in the www.nd.edu site (WWW-1), pages related to literary studies
of Shakespare (WWW-2), pages related to tango, specifically the music of Piazzolla (WWW-3); and
social networks, including inmates in prison (SOCIAL-1), sociology freshmen (SOCIAL-2), college
students in a course about leadership (SOCIAL-3). Figure from [17].

work.

While there is no closed form to express the number of higher-order motifs as a function of the order n,
in their work, Lotito et al., demonstrate a lower- and upper-bound on this number. Let m be the num-
ber of all the possible non-isomorphic connected hypergraphs with n vertices, then: m = O(Zzn_”_l);

m = 9(22 _277) Two finite hypergraphs are isomorphic if they are equivalent modulo relabeling of the
vertices. An isomorphism class is a collection of mathematical objects isomorphic to each other. Due
to the combinatorial explosion of the number of possible patterns given n nodes, in their work Lotito
et al. focus on the analysis of motifs of order 3 and 4. In particular there are 6 possible patterns
of higher-order interactions which involve three nodes (Figure 3.3a), while considering 4 nodes, there
exist 171 different higher-order motifs.

In Algorithm 1 it is reported the pseudocode which is proposed by Lotito et al. as an efficient
algorithm to solve the problem of counting the frequency of the higher-order motifs of order 3 of a
network. Each different motif represents an isomorphism class. The problem of motifs counting can
be interpreted as enumerating all the possible connected sub-hypergraphs of size n (in this case n = 3)
and assigning an isomorphism class to each of them. In line 3 a hash map is initialised and used as
a counter of the occurrences of each isomorphism class. In line 4 we iterate over all the hyperlinks
of order 3 and then recover the inner pairwise links to build the motif, whose configuration is stored
in motif. In order to check the presence of a hyperedge efficiently we can hash every hyperedge of
the hypergraph: in this way it is possible to check the existence of an hyperedge in constant time.
At this point we rely on a prior algorithm named ESU [28] in order to discover motifs involving 3
nodes that are composed only by pairwise relations, ignoring higher-order interactions which have
been already taken into account. As reported in the iterative loop in line 17, every time ESU outputs
a subgraph, the triplet of nodes could have been counted already in the previous step because of an
overlap between a pairwise motif and a hyperlink of order 3. In this case the triplet is discarded.

For higher-order motifs of order 4, the situation is similar, albeit there are some more details to take
into account (Algorithm 2).

What is more in Higher-order motif analysis in hypergraphs [13], analogously to what has been de-
scribed above regarding low order network motifs, a set of available network datasets from different
domains have been analyzed in order to identify higher-order families of hypergraphs, characterized
by their set of higher-order pattern of local interactions. In particular they have been used the pa-
rameters introduced in Section 3.1 for the purpose of studying the over- and under-expression of the
patterns of higher-order interactions involving three or four nodes. With the aim of generating ran-
domized networks needed to assess the statistical significance of each motif, it has been adopted a
generalization of the classical dyadic configuration model to hypergraphs as proposed by Chodrow et
al. [5]. In this manner we can highlight the different frequencies of the higher-order motifs in the
different domains, allowing to understand the relative structural importance of certain patterns of
interactions. For example, considering higher-order motifs involving three nodes, we can notice that
in the social and technological domain the motif composed by an hyperlink of size 3 and a triangle

10

1.00

0.75

0.50

0.25

<1 0.00

-0.25

e o codio
i 1
[030 Tech

—~0.75{ — Co-auth
— Bio

'\° ‘\./' v e
I J [
VYoV VY
(a) Enumeration of all the six possible patterns of (b) Differences in the expressions of the higher-order

higher-order interactions involving three nodes. Fig- 3-nodes motifs in the different domains. Figure from
ure from [13]. [13].

of dyadic edges is strongly over-expressed, suggesting that people interacting in groups also tend to
interact individually (Figure 3.3b).

4 Graph summarization

As technology advances, the amount of data that we generate and our ability to collect and
archive such data both increase continuously. Daily activities like social media interaction, web brows-
ing, product and service purchases, itineraries, and wellness sensors generate large amount of data, the
analysis of which can immediately impact or lives. This abundance of generated data and its velocity
call for data summarization. While data summarization techniques have been studied extensively, only
recently has summarizing interconnected data, or graphs, become popular [12]. The purpose of this
chapter is to provide a synthetic overview of the state-of-the-art methods proposed by the literature
for summarizing graph data.

4.1 Graph summarization methods

Overall, the notion of graph summary is not well defined. A summary is application-dependent
and can be defined with respect to various goals: it can preserve specific structural patterns, focus
on some network entities, preserve the answers to graph queries, or maintain the distributions of
graph properties. In a nutshell, the key objective of graph summarization include query efficiency and
approximate computations, compression and data size reduction, static or temporal pattern discovery,
visualization and interactive large-scale visual analytics, influence analysis and understanding, entity
resolution, and privacy preservation.
In order to face the difficult and multifaceted problem of graph summarization, the literature has
proposed several methods which can be categorized based on the type of data handled and the core
techniques employed. In this sense, we report a possible structured classification of the main graph
summaries types whose peculiarities are covered in the following. Actually, in this thesis we strain
the attention on the problem of summarization of static graphs, which can be formally described as
follows: given a static graph G or its adjacency matrix A, find a summary graph or a set of structures
or a compressed data structure to concisely describe the given graph. In what follows we resume the
methods which are commonly adopted in order to solve this latter problem.

Grouping-Based Methods
Grouping-based methods are among the most popular techniques for summarization. These methods
are distinguished into two main categories:

1. Node-Grouping Methods. Some approaches employ existing clustering techniques to find clusters
that then map to supernodes. Others recursively aggregate nodes into supernodes, connected via

11

Dedensified Graph

Original Graph

Figure 4.1: Example of graph dedensification. Many edges are removed after the addition of the
compressor node C, which connects to the high-degree blue nodes. Figure from [15].

superedges, based on an application-dependent optimization functions. We refer to the former
as ”Node clustering-based methods” and to the latter as "Node aggregation-based methods”.

(a) Node clustering-based methods. Although the goal of clustering is not graph summariza-
tion, the outputs of clustering algorithms can be easily converted to non-application-specific
summaries. In essence, a small representation of the input graph can be obtained by map-
ping all the nodes that belong to the same cluster/community to a supernode and linking
them with superedges with weight equal to the sum of the cross-cluster edges or else the
sum of the weights of the original edges (Newman and Grivan [21], Yang and Leskovec [32],
Low et al. [14]).

(b) Node aggregation-based methods. One representative algorithm of this category is GraSS [10],
which targets accurate query handling. This summarization method supports queries on
the adjacency between two nodes, as well as the degree and the eigenvector centrality of a
node. We discuss about this summarization method in Section 4.3.

2. Edge-Grouping Methods. Unlike node-grouping methods that group nodes into supernodes,
edge-grouping methods aggregate edges into compressor or virtual nodes to reduce the number of
edges in a graph. Note that in this section, ” compression” does not refer to bit-level optimization,
as in the following section but rather to the process of replacing a set of edges with a node.
Following the assumption that high-degree nodes are surrounded by redundant information that
can be synthesized and eliminated, Maccioni and Abadi introduce graph dedensification [15].
This last is an edge-grouping method that compresses neighborhoods around high-degree nodes,
accelerating query processing and enabling direct operations on the compressed graph. An
example of this process is illustrated in Figure 4.1.

Bit Compression-Based Methods
The goal of these approaches is to minimize the number of bits needed to describe the input graph,
where the summary consists of a model for the input graph and its unmodeled parts. One representa-
tive algorithm of this category has been proposed by Navlakha et al. [20]. Given a graph G = (Vg, Eq),
the representation for it R = (S, C) has two parts: the first is a graph summary S = (Vg, Eg) (much
smaller than the input) that captures the important clusters and relationships in the input graph,
while the second is a set of corrections C' that helps to recreate the original graph, if necessary. For
the sake of clarity, Figure 4.2 shows a sample graph (Figure 4.2a) and its representation (Figure 4.2b).
These works employ the two-part Minimum Description Length (MDL) code [23], whose goal is to
minimize the description of the given graph G and the model class in terms of bits. This principle has
its roots in information theory. It roughly states that the best theory to infer from a set of data is the
one which minimizes the sum of (i) the size of the theory, and (ii) the size of the data when encoded

12

S +@0)
_(gr d)
Ac=la) 1 Ay=1bc)
Ay = {g,h} : Az = {dlelf}
(a) Original Graph (b) Two-part Representation

Figure 4.2: The two part graph representation. The LHS shows the original graph, while the RHS
contains the graph summary (S), corrections (C'), and the supernode mapping. Figure from [20].

with the help of the theory. In the setting described above, the data is the input graph G, the theory
is the summary .S and the corrections C essentially represent the encoding of the data in terms of the
theory.

Simplification-Based Methods
Simplification-based summarization methods streamline the original graph by removing less ”impor-
tant” nodes or edges, resulting in a sparsified graph. As opposed to the methods above, here the
summary graph consists of a subset of the original nodes and/or edges. A representative work on
node simplification-based summarization techniques is OntoVis [25], a visual analytical tool that re-
lies on node filtering for the purpose of understanding large, heterogeneous social networks in which
nodes and links respectively represent different concepts and relations. OntoVis uses information that
relates nodes and edges, such as the degree of nodes of specific type, to semantically prune the network.

Influence-Based Methods

Influence-base methods seek to find a compact, high-level description of the influence dynamics in
large-scale graphs to understand the patterns of influence propagation at a global level. Usually such
methods formulate graph summarization as an optimization process in which some quantity related to
information influence is maintained. These summarization methods have been mostly applied on social
graphs, where important influence-related questions arise. Community-level Social Influence (CSI) [16]
is a representative work that focuses on summarizing social networks via information propagation and
social influence analysis.

4.2 Graph summarization benefits and applications

Graph summarization has various benefits, which include the following;:

e Reduction of data volume and storage: graphs of real-world datasets are often massive. For
example, as of August 2017, the Facebook social network had 2 billion users, and more than 100
billion emails were exchanged daily. Summarization techniques produce small summaries that
require significantly less storage space than their original counterparts. Graph summarization
techniques can decrease the number of 1/O operations, reduce communication volume between
clusters in a distributed setting, allow loading the summary graph into memory, and facilitate
the use of graph visualization tools.

o Speedup of graph algorithms and queries: while a plethora of graph analysis methods exist, many
cannot efficiently handle large graphs. Summarization techniques produce smaller graphs that
maintain the most salient information from the original graph. The resultant summary graph
can be queried, analyzed and understood more efficiently with existing tools and algorithms.

13

Allce BOb

Charlle Dave EIIen e ° e

(a) Social network graph. (b) Graph obtained from a social network replacing
user names with meaningless integer pseudonyms.

Figure 4.3: Figures from [10].

e [Interactive analysis support: summarization allows to handle information extraction and speed
up user analysis. The resultant graph summaries make it possible to visualize datasets that are
originally too large to load into memory.

e Noise elimination: real graph data are frequently large scale and considerably noisy with many
hidden, unobserved, or erroneous links and labels. Such noise hinders analysis by increasing
the workload of data processing and hiding the more ”important” information. In this sense,
summarization serves to filter out noise and reveal patterns in the data.

e Privacy and Anonymity: privacy and anonymity have emerged as important problems when
publishing social network graphs. Recent work has observed that removing known identifiers
(e.g., Name, SSN) is often not enough to prevent re-identification [3] [7] [19]. As a simple
example, consider the social network graph in Figure 4.3a, and suppose that we replace it with
the graph in Figure 4.3b, replacing user names with meaningless integer pseudonyms. Now
consider an attacker who knows that Bob is in the de-identified graph. If the attacker has some
simple information about the graph topology surrounding Bob (e.g., Bob has 4 neighbors), then
it is easy for the attacker to locate Bob. Interestingly, Hay et al. have newly demonstrated that
a graph summarization approach is sufficient to prevent this particular attack, even in the case
of an adversary who has strong structural background knowledge (i.e., knows the entire network
topology surrounding the target node) [7].

Given its advantages, graph summarization has extensive applications. As an example we con-
sider the experimental results reported by Koutra et al. [8]. In their work they develop an efficient
and effective algorithm called VoG (Vocabulary-based summarization of Graphs) to summarize and
understand large real-world graphs. The main idea is to construct a ”vocabulary” of subgraph-types
that often occur in real graphs (e.g., starts, cliques, chains), and from a set of subgraphs, find the
most succinct description of a graph in terms of this vocabulary. The success is measured by means of
the Minimum Description Length (MDL) principle, for which a subgraph is included in the summary
if it decreases the total description length of the graph. In this sense, the best summary of a graph
is the set of subgraphs that describes the graph most succinctly, i.e., compresses it best, and, thus,
helps a human understand the main graph characteristics in a simple, non-redundant manner. The
motivation behind VoG is that people cannot easily understand cluttered graphs, whereas a handful of
simple structures are easily understood, and are often meaningful. In Figure 4.4 we report the results
of VoG on the Wikipedia Controversy graph. The nodes are editors, and editors share an edge if they
edited the same part of the article. The original graph is depicted in Figure 4.4a. Evidently, no clear
pattern emerges and thus a human would have hard time understanding this graph. On the contrary,
in Figures 4.4b, 4.4c and 4.4d, we can appreciate the most important structures (i.e., structures that
save the most bits) discovered by VoG. In particular, in Figure 4.4b, with red color, there are shown
the centers of the most important ”stars”. Further inspection shows that these centers typically cor-
respond to administrators who revert vandalisms and make corrections. Moreover, Figure 4.4c and
Figure 4.4d give the two most important near-bipartite-cores. Manual inspection shows that these

14

(a) Original Wikipedia (b) VoG: 8 out of the (c¢) VoG: the most infor-

Controversy graph.
structure stands out.
ters are in red.

No 10 most informative struc- mative bipartite graph. It
tures are stars whose cen- represents an “edit war”

between factions (one of
them, in the top-left red
circle) changing each-
other’s edits.

(d) VoG: the second
most informative bipartite
graph. It represents an-
other ”edit war” between
vandals (bottom left circle
of red points) and respon-
sible editors (in white).

Figure 4.4: Summarization and undestranding of the most informative, from an information theoretic
point of view, structures of the Wikipedia Controversy graph. Results obtained by applying VoG
summarization algorithm. Figure from [8].

correspond to edit wars: two groups of editors reverting each others’ changes. For clarity, the members
of one group are denoted by red nodes (left), and the edges to the other group are highlighted in pale
yellow.

4.3 GraSS: Graph Structure Summarization

In their paper, Kristen LeFevre and Evimaria Terzi, propose a node aggregation-based summa-
rization methods referred to as GraSS (Graph Structure Summarization) [10]. Moreover, they suggest
a formal semantics for answering queries on summaries of graph structures. Their work has been a
source of great inspiration to achieve our contributions presented in the next chapter. Therefore in
this section we succinctly expose the core idea behind the summarization method in question.

The approach is essentially described in Figure 4.5. The input is a graph G(V, E) that is simple,
undirected, and unweighted. As usual, V' denotes the set of n nodes V = {vy,...,v,} and E denotes
the set of edges among these nodes. Given such an input graph G(V, E) a summary S(G) consists of:

1. A partition of the nodes of V' into parts V(V) = {V1, ..., V;}, such that V; CV and V; NV, =0,
fori,j € {1,...,k} and i # j. They refer to each group of nodes V; as a supernode of the summary
S.

2. For every supernode V; € V, summary S describes the number of edges within the nodes in
the supernode. That is, it counts the number of edges in the input graph G that have both
their endpoints in the nodes of V;. For supernode V; they denote this number by FE;. That is,
E; = |{e(u,v)|u,v € Vj,e(u,v) € E}|.

3. For every pair of supernodes V;, V; € V, summary S also gives the number of edges across the
two supernodes. That is, it counts the number of edges in the input graph G that have one of
their endpoints in a node of V; and their other endpoint in a node in Vj;. For two supernodes V;
and Vj, they denote this number by E;;. E;; = [{e(u,v)|u € Vi,v € Vj, e(u,v) € E}|.

Note that for any input graph G(V, E) there exist many possible summaries S. In the paper the set
of all possible summaries that can be extracted from an input graph G(V, E) is denoted by S(G). At
the end of this section we overview the basic idea which is operated by LeFevre and Terzi for finding
such partition.

15

{1,2,3}
(2 edges)

(2 edges)

(a) Input graph (b) Partitioned graph (¢) Graph summary

Figure 4.5: Graph summarization example. Figure from [10].

Replacing original graph G with summary S introduces uncertainty with respect to the structure
of GG. Intuitively, as mentioned above, given a summary, there are many possible original graphs that
could have produced the summary. Following the principle of indifference [2], in the absence of
additional information, it is reasonable to assume that each such reconstruction is equally likely. To
capture the uncertainty introduced by summarization, the semantics of a query) on S should be
defined, conceptually, with respect to the set of all valid reconstructions. The key is to utilize an
expected value semantics. Intuitively, using expected value semantics, the answer to a query @ is
the expected result, given a distribution over possible reconstructions. In the absence of additional
information, the principle of indifference suggests that it is reasonable to assume a uniform distribution.
In formal terms, let R(.S) denote the set of all valid reconstructions from summary S, and let () denote
a query on G with a boolean (0 or 1) or real-valued response. Under expected value semantics, the

~ Dcer(s) QG)

answer to @ is defined to be the real number e such that: e = TRET Using expected value
semantics, in the paper LeFevre and Terzi, demonstrated that some queries can be answered in closed
form. Furthermore, they observe that many other interrogations can be answered heuristically, with
reasonable accuracy.
By way of illustration, one of the simplest and most common graph-structure queries is the adjacency
query, which simply asks: given graph G(V, E) and two nodes u, v € V', does there exist an edge (u,v) €
E? Given a summary S, the expected adjacency matriz captures the answers to all possible adjacency
queries under expected value semantics. The expected adjacency matrix is formally defined in the
following way. Let S be a summary graph. The expected adjacency matrix A for S is a |V|x|V| matrix,
h 1l entries are real numbers in the range [0, 1] defined as: A(u,v) = {EW.B)GER(S) (uo)eB}
where all e ge [0,) RS)]
Given a graph summary, it can be proved that each of the entries in the expected adjacency matrix is
easily computed in closed form.

In GraSS the quality of a summary is measured based on how well the summary S(G) describes
the input graph G. Given an input graph G, the goal is to find the summary S(G) such that G’s
adjacency matrix A and the expected adjacency matrix A of summary S(G) are as similar as possible.
This intuition is captured by the reconstruction error. Intuitively, the reconstruction error measures
the average absolute error, resulting from using summary S rather than G, across all possible adjacency
queries. The notion is formally defined as follows. Let G(V, E) be an input graph described by a
(|V] x |V]) adjacency matrix A. Let S be a summary of G, and let A be the expected adjacency
matrix for S. The (normalized) reconstruction error of S is defined with respect to G as follows:

n 1% 1% T . ..
Re(A]4) = 7 S0 214G, 5) — AG).

We conclude this section describing the technique put forward by LeFevre and Terzi in order
to perform graph summarization. In the paper, they give several algorithmic alternatives to face the
problem. We limit ourselves describing the essence of their approach. The task is achieved using a
greedy algorithm. The computational process starts with a summary graph in which each node is

16

placed in a separate supernode. In each step, the two supernodes that cause the largest reduction
in the objective function are merged. The algorithm repeats until a stopping condition is met. The
procedure sets out two main stopping conditions:

1. The easiest case is when the maximum number of supernodes k in the output summary is
specified as a constraint. In this instance, we stop the greedy execution when the summary
graph contains k super-nodes.

2. Otherwise, if the maximum number of supernodes k in output summary is unknown, the stopping
condition states that there is no merging of super-nodes that can improve the objective function.
This latter can be defined on the basis of the reconstruction error. As an alternative the objective
function can take into account the total number of bits required to encode the summary graph
and the input graph G(V, E) given the summary. This idea mirrors the Minimum Description
Length principle allude above, where in this case G(V, E) represents the input data, while the
summary S of the graph is the model.

5 Hypergraph summarization

Nowadays, it is frequent to address huge datasets which are tough to be conveniently represented.
What is more, modeling numerous interacting entities leads to noise and complications in capturing
interesting peculiarities of the network. Although several methods have been proposed with the aim
of concisely describe low-order graphs, to the best of our knowledge, the literature still lacks of an ex-
tension of practical summarization procedures to the higher-order domain. In this chapter we propose
our solution to the novel problem of hypergraph summarization. In particular our contribuition can
be summarized as:

1. Problem formulation: we introduce a possible way to formalize the process of hypergraph sum-
marization.

2. Algorithmic implementation: we develop an algorithmic method to solve the problem at issue.

3. Experiments on real datasets: we evaluate our implementation on a set of freely available network
datasets from different domains.

5.1 Node aggregation-based hypergraph summarization

Our aim is to introduce a method for the purpose of summarizing a hypergraph. To this end, we
propose a node aggregation-based hypergraph summarization method. The input is the representation
of a network of entities modelled with a hypergraph H (X, E) made up of a finite set of vertices X
linked together through higher-order hyperedges £ C P(X) (Figure 5.1a).

Given such an input hypergraph H (X, F) a summary S(H) consists of:

1. A partition of the nodes of X into parts X(X) = {X1, ..., X}, such that X; C X and X;NX; =0,
fori,j € {1,....,k} and i # j. We refer to each group of nodes X; as a supernode of the summary
S. The core of our summarization process is to build supernodes from higher-order motifs.
Our baseline algorithm visits the hypergraph and condenses nodes into supernodes whenever a
higher-order motif is found in the data structure. In the following of this chapter we discuss
about more convenient and deterministic greedy heuristics which have been tested in order
to achieve better quality results. For the sake of finding out the motifs we are interested in,
we execute the algorithm for higher-order motif discovery implemented by Quintino Francesco
Lotito et al. in their work [13]. In the procedure, each supernode is associated with a unique
identifier and we map each node of the primary hypergraph with the supernode it belongs to.
As explained in Chapter 3, the combinatorial explosion of higher-order motifs makes intractable

17

e,={Giuseppe, Sara, Maria}
Marco Luca e,={Greta, Sofia, Matilde}
Matilde e, R,: Marco, Luca, e [2]
° R,: Carlo, e [1]
R, e[1], e [2]

Carlo

" H (X, E) S(X, E)

(a) Input hypergraph H(X,E). X={Marco, Luca, (b) Hypergraph summarization output applying base-
Sara, Maria, Giuseppe, Carlo, Greta, Matilde, Sofia}; line algorithm to the input illustrated in Figure 5.1a.
E={R;{Marco, Luca, Sara, Maria}, Ro{Giuseppe,

Sara}, Rs{Sara, Maria}, R4{Giuseppe, Carki},

R5{Greta, Matilde}, Rg{Sofia, Matilde}, R;{Greta,

Sofia}, Rg{Maria, Greta, Sofia}}.

Figure 5.1

their storing and indexing in memory for high orders, as a result we focus on the analysis of
the higher-order motifs of order 3 and 4. The choice of obtaining supernodes from motifs is
interestingly profitable since they are the fundamental building blocks at the network microscale
and so, natural candidates to become a cluster.

2. For every supernode X; € X, we conveniently keep track of its category. This last provides hints
about the internal configuration of the supernode. For example, we have a distinct category for
each of the six possible patterns of higher-order interactions involving three nodes.

3. Each supernode is populated by entities which interacts with other nodes in the primary hy-
pergraph. These entities are replaced and represented by their supernode in the summarized
data structure. For each supernode we indicate the cardinality by which it participates to the
relationships. This quantity is rigorously expressed by the intersection profile between the tar-
get supernode and the hyperedge. In other words we count the number of vertices in common
between the hyperedge and the supernode. For example, in Figure 5.1b supernode ey shares two
nodes with relationship R;.

A more formal explanation of the proposed summarization method is reported in Algorithm 3.

Note that for any input hypergraph H (X, E) there exist many possible summaries S. We denote
the set of all possible summaries that can be extracted from an input hypergraph H(X, FE) with
S(G). Figure 5.1b illustrates a possible output of the summarization process given the hypergraph in
Figure 5.1a as input. In this case, the execution has first discovered the motif populated by Giuseppe,
Maria, Sara that have been condensed into supernode ey. Then, the computational process has visited
the fully connected triplet Greta, Matilde, Sofia that are summed up into supernode e;. At this point,
no more higher-order motif can be found considering the remaining entities. As a consequence, all the
nodes which do not belong to any supernode yet (Marco, Luca, Carlo), become supernodes themselves.
The summary includes three hyperedges: Ri, R, R3. Marco and Luca are involved in relationship
R1, whereas Carlo is a member of Ry. Supernode ey partecipates with two nodes in Ry, with one
node in Ry and with one node in the hyperedge R3. On the other hand e; intersects relation Rz with
two components. In Section 5.3 we reason about how to evaluate the obtained summary. With these
metrics we are able to compare more sophisticated variants with respect to the baseline approach.

5.2 Query answering according to expected value semantics

The process of summarization, by definition, removes some information from the original hy-
pergraph. Intuitively, this introduces some uncertainty into any query or analysis that takes the

18

summarized hypergraph as input. To address this problem, we extend the formal probabilistic seman-
tics covered in Chapter 4 for evaluating structural queries on hypergraph summaries. Intuitively, given
a summary, there are many possible original hypergraphs that could have produced the summary. Fol-
lowing the principle of indifference, in the absence of additional information, it is reasonable to assume
that each such reconstruction is equally likely. Using this assumption, we define the expected-value
response for some query). Given a summary S we conceptually answer to each query considering all
the possible reconstructions R(S). The purpose of this section is to discuss about the queries which
have been considered in our work. In this regard, a useful future research direction is to continue to
search for closed-form and heuristic solutions to other queries both with local and global scope.

Expected adjacency matrix Given a hypergraph H(X, F) and two nodes u,v € X, the
adjacency between them qualitatively indicates how much u and v are reciprocally adjacent. In other
words this quantity measures how many hyperedges are shared between u and v. In order to answer to
this interrogation on the given summary S, we build an expected adjacency matrix similarly to what
has been treated in Chapter 4. Theoretically, given a summary S5, the expected adjacency matrix is
properly defined considering all the possible reconstructions R(S). However, for the sake of efficiency
and tractability, we introduce a closed form formula to answer to this question. Given a summary S
and two nodes u,v € S, in order to compute the entry A(u,v) of the expected adjacency matrix, we
distinguish between three cases:

1. u = v then A(u,v) = 0.

2. wand v belong to distinct supernodes. In particular, u is part of supernode U while v is a member
of supernode V. These supernodes could share some common hyperedges R = {R1, Ry, ..., R, },
i.e. U and V are both involved in each R; € R. Supernode U partecipates to relationship R;
with an intersection profile 4u while the membership of supernode V in R; is characterized by in-
tersection profile iv. For all R; € R there exist two discrete random variables X and Y such that:

1 i 1 i
¥ _ u € R Ly = vER
0 ugéRZ 0 U¢Ri

Since both X and Y are independent random variables then:
E[XY] = E[X]E[Y]

E[X] express the probability by which node u participates in relation R;. Simmetrically E[Y]
quantifies the likelihood that node v is involved in relation R;. We can simply compute these
values as follows: z'u .

ol P
Where |U| and |V| indicate the cardinality of supernode U and V respectively. At the end of
the day we can calculate the adjacency value between u and v as:

A(u,v) = Y E[XY]g,
VR;eR

E[X]

3. u and v both belong to the same supernode V. The value A(u,v) takes into consideration
both the internal contribution related to the relationships inside the supernode and the external
contribution caused by the hyperedges where V is involved. Since these contributions are inde-
pendent one with respect to the other, the overall expected value can be calculated as:

A(u,v) = internalContribution + externalContribution

(a) V is a supernode obtained from a 3-nodes motif. The internal contribution depends on the
internal configuration of the motif from which the supernode has been obtained. Remember
that we know the internal layout of the supernode since we store the corresponding motif

19

category. The computation can be solved taking into account pairwise and order-three
relations separately. We denote with X the discrete random variable which indicates how
many pairwise interactions inside V' are shared between u,v. On the other hand Y is the
discrete random variable which refers to how many order-three interactions inside V' are in
common between u and v. cardRel2 and cardRel3 are the number of pairwise interactions
in V and the number of order-three hyperedges in V respectively. Overall, the internal
contribution can be calculated as:

12
internalContribution = E[X] + E[Y]| = % * cardRel3

What is more, we need to take into account the external contribution due to the participa-
tion of V' in a number of hyperedges R = {R1, Ry, ..., R,}. V intersects each R; € R with
intersection profile iv € {1,2,3}:

0 w=1
externalContribution = % w =2
1 w=3

The total external contribution is given by the summation of the external contributions
related to each R; € R.

(b) V is a supernode obtained from a 4-nodes motif. V can host pairwise, order-three and
order-four interactions. u and v can participate to these relations independently. Actually,
a node can belong to n pairwise hyperedges and this do not affect the probability it appears
also in 3-nodes hyperedges. As a consequence, we separately consider the contributions
resulted from order two, order three and order four interactions. In this regard, we introduce
three independent discrete random variables X, Y, Z, which respectively indicates how many
pairwise interactions are there between u, v, the number of 3-nodes hyperedges containing
u,v and the number of 4-nodes hyperedges which include u,v. Overall:

Blx) = SRy = CTE L plg) = cardRels

internalContribution = E[X] + EY| + E[Z]

Moreover, V' takes part to a number of relations R = { Ry, Ra, ..., R,}. V partecipates to
each relation with iv € {1,2,3,4}.

0 w=1

1 .

= w=2
externalContribution = ?]

5 w=3

1 w=4

The total external contribution is given by the summation of the external contributions
related to each R; € R.

The rigorous proof of the above formula is based on probability manipulations and is omitted for
space. In the algorithm we can agglomerate these formulas into a single closed form equation.

For the sake of clarity, in Figure 5.2a we report an example of adjacency matrix and expected adjacency
matrix given hypergraph in Figure 5.1a and the summary in Figure 5.1b.

Expected adjacency degree centrality Given a hypergraph H(X, F) and the corresponding
adjacency matrix A, the adjacency degree centrality of a node n € X is defined as:

ad(n) = 3 An,j)

vjex

20

Giuseppe

Matilde

Marco

Luca

Sara

Maria

Giuseppe

Carlo

Greta

Matilde

Sofia

Marco

Marco

1

213

2/3

2/3

0

0

0

0

Luca

Luca

0

213

2/3

2/3

0

0

0

0

Sara

Sara

213

0

1

1

1/3

2/9

2/9

2/9

Maria

Maria

2/3

1

0

1

13

2/9

2/9

2/9

Giuseppe

Giuseppe

2/3

1

1

0

13

2/9

2/9

2/9

Carlo

Carlo

Greta

Greta

0

0

13

2/9

13

2/9

13

2/9

0

0

0

0

0

413

0

413

Matilde

Matilde

0

2/9

2/9

2/9

0

413

0

413

Sofia

Sofia

0

2/9

2/9

219

0

413

413

0

(a) Adjacency matrix of the hypergraph in Figure 5.1a.

R1

R2

R3

R4

R5

R6

R7

R8

Marco

Luca

Sara

Maria

(b) Expected adjacency matrix
summary in Figure 5.1b.

calculated given the

R3

Giuseppe

Marco

0

Carlo

Luca

0

Greta

{Sara,Maria,Giuseppe}

1/3

Matilde

Carlo

0

Sofia

{Greta,Matilde,Sofia}

2/3

(b) Expected incidence matrix calculated given the
summary in Figure 5.1b.

(a) Incidence matrix of the hypergraph in Figure 5.1a.

Analogously, given a summarized hypergraph S(X, F) and the corresponding expected adjacency
matrix A, the expected adjacency degree centrality of a node n € X is defined as:

ad(n) = 3 A(n.)

vjex

Expected incidence matrix Given a hypergraph H(X, F) and its summary S(Xs, Es), the
purpose of the expected incidence matriz I is to state, given a node n € X and a hyperedge h € E,,
what is the probability of n € h. By definition node n is part of a supernode N in S. N intersects h
with a given intersection profile in. Consequently, the entry of the expected incidence matrix I(n, h)
can be simply computed as: ‘
mn

I(n,h) = ————
(n,) |supernode|

where |supernode| is the cardinality of N, which in our work is between one and four. For the sake of
clarity, in Figure 5.3a we report an example of incidence matrix and expected incidence matrix given
hypergraph in Figure 5.1a and the summary in Figure 5.1b.

Expected degree centrality Analogously to the case of graphs, degree centrality is a relevant
way to measure the importance of a node. In the hypergraph field, this quantity indicates the number
of hyperedges which contain the target node. Given a summarized hypergraph S(X, E), the ezpected
degree centrality of a vertex v € X is determined by the hyperedges inside the supernode V which
includes v and by the interactions in which V' is involved. We indicate with in_d(V') the portion of
expected degree centrality because of the internal configuration of the supernode V. On the other
hand the expected amount of relationships which contain node v due to the hyperedges in which
supernode V' partecipates, is expressed by the quantity ex_d(V'). Clearly, ex_d(V) and in_d(V') are
independent one with respect to the other. As a consequece we can calculate the expected degree

21

centrality of node v as follows: B
d(v) = ex_d(V) +ind(V)

Supernode V' appears in a number of hyperedges R = { Ry, Ra, ..., R, }. V intersects each set of nodes
R; € R with a certain intersection profile iv. We can compute ex_d(V') taking into consideration the
contribution of each R;. The contribution of each external hyperedge R; can be simply calculated as
follows: i
ex-d(V) = |supernode|

Where |supernode| is the cardinality of the target supernode. Alternatively, we can compute ez_d(V)
summing all the entries of the row which represents node V' in the expected incidence matrix. We
indicate with X the discrete random variable which counts the number of pairwise interactions at-
tended by v inside its supernode V. Y is the discrete random variable which represent the number
of 3-nodes hyperedges inside supernode V where we find node v. Finally, Z is the discrete random
variable which enumerate the amount of 4-nodes relationships inside V' which incorporate node wv.
Clearly, X,Y and Z are independently distributed one with respect to the other. Given this, it is
possible to demonstrate that:

2 * cardRel2 . 3xcardRel3 4 xcardReld
|supernode| |supernode| |supernode|

ind(V) =

The rigorous proof of the above formula is based on probability manipulations and is omitted for
space. As an example, given the hypergraph H (X, F) in Figure 5.1a and the resulting summary in
Figure 5.1b, the degree centrality of Giuseppe is 2 while the expected degree centrality is %.

5.3 Summary quality evaluation

In our work, we also study the problem of finding a ”good” hypergraph summary. In our problem
setting, we introduce three metrics which can be used in order to evaluate the output of the hypergraph
summarization process:

1. Accuracy: measure the quality of a summary based on how well the summary S describes the
input hypergraph H.

2. Conciseness: measure the amount of space that is saved using the summary S instead of the
input hypergraph H.

3. Responsiveness: operating on the summary S rather than using the original hypergraph H,
leads to better query responsiveness. This quantity measures the improvements as regards the
answering time to the queries on the data collection.

For each metric, one can define several measures to assess the obtained results. The purpose of
this section is to present the quantities that we propose to evaluate the accuracy, conciseness and
responsiveness of a given summary. In this regard, a useful future research direction is to continue to
search for useful evaluation measures.

Measuring summary accuracy

e Reconstruction error: given an input hypergraph H (X, E), we want to find the summary S
such that H’s adjacency matrix A and the expected adjacency matrix A of a summary S are
as similar as possible. This intuition is captured by the reconstruction error. Intuitively, the
reconstruction error measures the average absolute error (resulting from using summary S rather
than H) across all possible adjacency queries.

X1 X

Re(ALA) = 5 30 JAG.4) = AG.5)

i=1 j=1

22

e Average degree centrality error: in the previous section we discuss about degree centrality as a
significant way to measure the importance of a node. As well as the reconstruction error, the
average degree centrality error measures the average absolute error that we commit due to the
usage of summary .S rather than the original hypergraph H when computing the expected degree

centrality.
X

ADCE = X ; |d(i) — d(i)]

In the formula, d(i) and d(i) represent the degree centrality of node i given the hypergraph
H(X, F) and the expected degree centrality of node i calculated from the summary of H respec-
tively.

Sometimes, due to the considerable size of hypergraphs obtained from real world datasets, the compu-
tation of the reconstruction error and of the average degree centrality error considering every node is
computationally intractable. As a result, in order to face this limitation, we suggest to select a subset
of the original node set in order to conveniently compute these quantities. A proper subset of the
original node set can be selected randomly or as an alternative, adopting more sophisticated criteria.

Measuring summary conciseness

e Number of nodes reduction: given a hypergraph H (X, E') and the resulting summary S(Xs, Es),
a first interesting way to quantify the conciseness of S is simply through a comparison between
|X| and |Xg|. For example, we can notice with ease that the hypergraph in Figure 5.1a has
|X| = 9 while the output summary has |Xs| = 5. In this toy instance we get a 44% node
reduction; as we can see in Section 5.4, in larger and more concrete scenarios, the results are
more appreciable. This measure is significant since the computational complexity of several
algorithm executed on hypergraphs depends on the number of nodes.

e Compression ratio: given a hypergraph H (X, F) and the corresponding output of the sum-
marization process S(Xs, Es), we can evaluate the conciseness of the solution calculating the
compression ratio cr(S).

_ |E]

|E|

The ratio quantifies the hyperedge number reduction which characterizes the summary S with
respect to the primary data structure H. For example, given the hypergraph in Figure 5.1a as
input and the summary in Figure 5.1b as output, the compression ratio is: % = 0.375. This means
that the summary has 62.5% less hyperedges with respect to the initial hypergraph. Clearly,
this reduction has a positive impact on several algorithm which are executed on hypergraphs,
whose computational complexity is related to the amount of hyperedges.

cr(S)

Measuring summary responsiveness:

e FEzxecution time: one of the purpose of hypergraph summarization is to speed up hypergraph
algorithms and queries. In order to evaluate the output of the summarization process with re-
spect to this aspect, we time the execution of a hypergraph algorithm. In particular, we have
implemented an algorithm which computes the distance between two nodes. Given a hypergraph
H(X, E), the corresponding summary S(Xj, F) and two nodes u,v € X, the distance between u
and v in H corresponds to the number of hyperedges between u and v in the original hypergraph,
while the distance between the same couple of nodes in .S corresponds to the number of hyper-
edges between U and V which are the supernodes which includes u and v in the summarized
data structure. With the purpose of computing the execution time of this process we adopt the
Python module time whose method time() returns the number of seconds passed since epoch.
Nodes u and v are chosen randomly, hence it is often better to execute the computational process
more times and consider an average execution time.

23

Figure 5.4: Motif categories favoured by heuristic HE1/[3]. These are the classes which leads to the
best knowledge about the internal supernode configuration. For example, in each of these classes we
can state with total confidence the amount of hyperedges inside a supernode which are shared between
its components.

5.4 Results

In this section we apply the hypergraph summarization algorithm on a set of freely available
network datasets from different fields. In order to carry out our experiments, we have studied the
following datasets:

e PACS: nodes correspond to authors and each hyperedge is the set of authors on a scientific
publication in the field of physics.

e conference: nodes are participants of a conference. Wearable sensors are exploited to construct
a network of proximity contacts among people. Contacts are aggregated in time-windows of 20
seconds. Each hyperedge is a maximal clique in each layer (i.e. each interval) of the temporal
network of contacts.

o Facebook-known-pairs_data_2013: nodes are students attending a high school. Interactions rep-
resent friendship relationships on Facebook.

Using our solution to face the problem of hypergraph summarization, it is really frequent that
there exist several motifs in the original hypergraph which share some components. For example,
in Figure 5.1a the triplets {Giuseppe, Sara, Carlo} and {Giuseppe, Sara, Maria} are two distinct
3-nodes motifs with two vertexes in common. Both of them are valid candidate supernode. However,
this choice is mutually exclusive since, by definition, the summary node set is a partition of the
original node set. As a consequence, we can construct a supernode with {Giuseppe, Sara, Maria} or
considering the set {Giuseppe, Sara, Carlo}. What is more, we have often to choose between 3-nodes
supernodes or the order 4 counterpart. This is the case of the 4-nodes motif {Marco, Luca, Sara,
Maria} and the 3-nodes motif {Giuseppe, Sara, Maria}. We have to decide wether condensing the
former into a 4-nodes supernode or the latter into a 3-nodes supernode. In order to deal with these
alternatives there are no definitive solutions. In this regard, in the following of this section, we report
our results applying some greedy heuristics. An open research direction is to seek for new convenient
greedy choices in order to achieve better results.

The first approach that has been tested is the baseline algorithm whose pseudocode is reported
in Algorithm 3. We refer to this implementation as HEO[N] where N is the number of vertexes
which populate each supernode bigger than one node in the summary. For example HE0/3] takes into
consideration only 3-nodes motif and condenses the significant patterns following visit order without
making any sophisticated choice. In other words, if the triplet {Giuseppe, Sara, Maria} is discovered
before motif {Giuseppe, Sara, Carlo} throughout the hypergraph visit, only {Giuseppe, Sara, Maria}
is a supernode in the output summary. In order to evaluate the results of the baseline algorithm, we
introduce a first heuristic attempt named HE1/3]. Following, this latter approach, we consider only
3-nodes motifs. Whenever there is a collision between two supernode alternatives we give priority
to the motif categories reported in Figure 5.4. Actually, these are the classes which allow the best
knowledge about the internal supernode configuration. Applying this method on our toy example in
Figure 5.1a we would prioritize supernode {Maria, Greta, Sofia} rather than {Sara, Maria, Giuseppe}.
In the following we report the results obtained applying these methods on dataset PACS, which is the
biggest data collection considered in our work.

24

2

18
N avg error |
100 1,81 14

12

500 1,55 1
1000 1,6 038
0,6

5000 1,39 04
10000 1,42 02

0
100 500 1000 5000 10000

Figure 5.5: Accuracy test. Average degree centrality error. Dataset PACS. Heuristic HE0[3]. The
graph relates the number of nodes (N) randomly selected to perform the computation on the z axis
with the average degree centrality error (avgerror) due to the usage of the summary instead of the
original data structure, reported on y axis.

18

1,6
N avg error

9 1,4
100 1,53 12
500 1,22 1
1000 1,76 08
0,6

5000 1,81
0,4
10000 1,46 02

0
100 500 1000 5000 10000

Figure 5.6: Accuracy test. Average degree centrality error. Dataset PACS. Heuristic HEO[4]. The
graph relates the number of nodes (N) randomly selected to perform the computation on the z axis
with the average degree centrality error (avgerror) due to the usage of the summary instead of the
original data structure, reported on y axis.

5.4.1 Dataset PACS
Accuracy - Heuristic: HEO0/3], HEO[4], HE1[3]

In order to evaluate how well the summary S describes the input hypergraph H, we consider the
accuracy of the expected degree centrality with respect to the actual degree centrality. Due to the large
number of nodes which populate the dataset, we conveniently consider the average degree centrality
estimation error among N randomly chosen nodes. Results are reported in Figure 5.5, Figure 5.6 and
Figure 5.7. We can observe that with all the heuristics we achieve good summary accuracy. The
plotted curve oscillates around the actual error value. Following this behaviour, the line progressively
converges on the value that we would appreciate considering the entire node set instead of a random
sample. Unfortunately, there is no relevant improvements applying HE1/3] with respect to the baseline
method.

Conciseness - Heuristic: HE0[3], HEO[}], HE1[3]
In the table, the first column reports the target heuristic, the second column reports the number of
nodes in the original hypergraph, the third column reports the number of supernodes which populate
the output summary, the fourth column reports the number of supernodes with cardinality greather
than one, the fifth column reports the achieved compression ratio.

’ Conciseness - Dataset: PACS

Heuristic | |X]| | X s Supernodes Compression raio
HEO[3] | 316551 282285 (10.825% less nodes) 17133 0.842 (16% less edges)
HEO[4] 316551 | 275124 (13.087% less nodes) 13809 0.833 (17% less edges)
HE1[3] 316551 281945 (10.932% less nodes) 14658 0.865 (14% less edges)

25

N avg error

100 216 |19

500 1,44
1

1000 1,15

5000 1,41
05

10000 1,39

0
100 500 1000 5000 10000

Figure 5.7: Accuracy test. Average degree centrality error. Dataset PACS. Heuristic HE1[3]. The
graph relates the number of nodes (N) randomly selected to perform the computation on the = axis
with the average degree centrality error (avgerror) due to the usage of the summary instead of the
original data structure, reported on y axis.

Responsiveness - Heuristic: HE0[3]

We execute the algorithm to compute the distance between two randomly selected nodes in the hyper-
graph and the algorithm to compute the distance between the two corresponding supernodes in the
summarized data structure as explained in Section 5.3. Over the course of this process, we keep track
of the time to complete the task. Considering ten executions, the computational procedure takes on
average 497.355 seconds in the case of the original hypergraph and on average 446.978 seconds in the
case of the summary hypergraph. The best execution returned a result 55 seconds before using the
summary rather than the initial hypergraph (11% improvement).

5.4.2 Dataset conference

Evaluating the performances resulting from the application of the heuristics that have been
discussed so far on conference dataset, do not lead to satisfying results in terms of accuracy.

Accuracy - Heuristic: HEO0/3]
In this case we have fewer nodes, so we can estimate summary accuracy with respect to all the node
set rather than considering an average evaluation based on random samples.

’ Accuracy - Dataset: conference

Heuristic | Average degree centrality error | Reconstruction error
HEO[3] 22.933 0.306

Conciseness - Heuristic: HEO[3]
In the table, the first column reports the target heuristic, the second column reports the number of
nodes in the original hypergraph, the third column reports the number of supernodes which populate
the output summary, the fourth column reports the number of supernodes with cardinality greather
than one, the fifth column reports the achieved compression ratio.

Conciseness - Dataset: conference ‘
| X | | X 5| Supernodes | Compression raio
403 | 159 (60.546% less nodes) 122 0.976 (2.4% less edges)

Heuristic
HEO[3]

Responsiveness - Heuristic: HEO[3]
This time we consider 100 executions of the node distance algorithm. The dataset is significantly
smaller than PACS and as a result the benefits are less rewarding. The computational process takes
on average 0.01949 seconds in the case of the original hypergraph and on average 0.01786 seconds in
the case of the summary hypergraph.

26

The reason why we obtain a high average degree centrality error, is because there are a lot of

supernodes whose components are structurally too different one with respect to the other. More in
depth, we inspect an order three supernode {A,B,C} in the summary. The three components have
the following degree centrality values: d(A) = 3, d(B) = 72, d(C') = 116. So different values lead
inevitably to an unrepresentative expected degree centrality: degpectea({A, B,C}) = 63.67.
In order to improve the output of the summarization process, we introduce motif degree similarity
(MDS) which is a quantity to measure the structural similarity between the components of a supernode.
MDS is quantitatively represented by the mathematical variance calculated from the degree centrality
measures which characterize the motif components. Subsequently, we introduce a greedy heuristic
referred to as HE2[NJ. This latter computes the motif degree similarity value for each candidate
supernode and gives precedence to the clusters distinguished by lower degree centrality variance. The
obtained results highlights a significant accuracy improvement because of the introduction of HE2/N]
heuristic.

Accuracy - Heuristic: HE2/[3]

’ Accuracy - Dataset: conference

Heuristic | Average degree centrality error | Reconstruction error
HE2[3] 2.063 0.265

Conciseness - Heuristic: HE2/[3]
In the table, the first column reports the target heuristic, the second column reports the number of
nodes in the original hypergraph, the third column reports the number of supernodes which populate
the output summary, the fourth column reports the number of supernodes with cardinality greather
than one, the fifth column reports the achieved compression ratio.

’ Conciseness - Dataset: conference ‘
| X| | X
403 | 211 (47.643% less nodes)

Compression raio
0.981 (1.87% less edges)

Supernodes
96

Heuristic
HE2[3]

Responsiveness - Heuristic: HE2/[3]
We consider 100 executions of the node distance algorithm. The computational process takes on
average 0.01698 seconds in the case of the original hypergraph and on average 0.01653 seconds in the
case of the summary hypergraph.

5.4.3 Dataset Facebook-known-pairs_data_2013

At this point, we report the results obtained on the Facebook dataset. This time we try also to
consider order three and order four motifs at the same time (HE0[4] + HEO0[3]).

Accuracy - Heuristic: HE0[3], HEO[4], HE1[3], HE2[3], HEO[}]+HEO0[3]
In this case we have fewer nodes than PAC'S, so we can estimate summary accuracy with respect to
all the node set rather than considering an average evaluation based on random samples.

Accuracy - Dataset: Facebook

Heuristic Average degree centrality error | Reconstruction error
HEO[3] 5.03 0.119
HE1[3] 3.782 0.082
HE2(3] 0.701 0.082
HEO[4] 5.481 0.134
HEO[4]+HEO][3] 5.506 0.134

27

Relationship between adjacency degree centrality and number of nodes characterised by that centrality measure

8

7 4

6 -

Number of Nodes

-

T T T

200 300 400 500 600
Adjacency Degree

04 ||||
00

0 1

Figure 5.8: Dataset: conference. Correlation between adjacency degree centrality (x axis) and number
of nodes having that adjacency degree centrality value (y axis).

Conciseness - Heuristic: HE0[3], HEO[4], HE1[3], HE2[3], HEO[4}]+HEO0[3]
In the table, the first column reports the target heuristic, the second column reports the number of
nodes in the original hypergraph, the third column reports the number of supernodes which populate
the output summary, the fourth column reports the number of supernodes with cardinality greather
than one, the fifth column reports the achieved compression ratio.

Conciseness - Dataset: Facebook ‘

Heuristic | X | | X s| Supernodes Compression raio
HEO[3] 156 | 60 (61.538% less nodes) 48 0.925 (7.52% less edges)
HE1][3] 156 | 74 (52.564% less nodes) 41 0.914 (8.56% less edges)
HE2[3] 156 | 84 (46.154% less nodes) 36 0.935 (6.47% less edges)
HEO[4] 156 | 51 (67.308% less nodes) 35 0.909 (9.05% less edges)

HEO[4]+HEO[3] | 156 | 49 (68.59% less nodes) 36 0.907 (9.25% less edges)

Responsiveness - Heuristic: HE0/3], HEO[4], HE1[3], HE2[3], HEO[4]+HEO0[3]
We consider 100 executions of the node distance algorithm. The dataset is significantly smaller than
PACS and as a result the benefits are less rewarding.

’ Responsiveness - Dataset: Facebook

Heuristic Exec. time original hypergraph | Exec. time summarized hypergraph
HEO[3] 0.00219 s 0.00187 s
HE1[3] 0.00234 s 0.00199 s
HE2[3] 0.00251 s 0.00231 s
HEO[4] 0.00216 s 0.00183 s
HEO[4]+HEO0[3] 0.00216 s 0.00182 s

5.4.4 Correlation between degree centrality and average degree centrality error
Finally, our experiments have taken into account the correlation between the nodes having a
certain degree centrality in the initial hypergraph and their corresponding average degree centrality
error which characterizes them in the output summary. According to what has been discussed in
Chapter 1, in most real networks the degree distribution is highly asymmetric: most of the nodes have
low degrees while a small but significant fraction of nodes have an extraordinarily high degree [30].
The plots in Figures 5.8, 5.9, highlights this interesting behaviour in the case of the dataset conference.

With the aim of studying the average degree centrality error in the summarized data structure as a
function of the degree centrality in the original hypergraph, we propose the plots in Figures 5.10, 5.11.

28

Relationship between degree centrality and number of nodes characterised by that centrality measure

10 A

Number of Nodes
(=]

"lllll 0 I

0 50 100 50 200 250
Degree Centrality

Figure 5.9: Dataset: conference. Correlation between degree centrality (z axis) and number of nodes
having that degree centrality value (y axis).

Relationship between degree centrality and average expected degree centrality estimation error

1751 conference.dat
150 o
125 4

100 -

75 4

Average degree centrality error

0 50 100 150 200 250
Degree Centrality

Figure 5.10: Dataset: conference. Heuristic: HEO[3]. The plot describes the relationship between
degree centrality and average degree centrality error.

Relationship between degree centrality and average expected degree centrality estimation error

—— conference.dat

40 4

Average degree centrality error

0 50 100 150 200 250
Degree Centrality

Figure 5.11: Dataset: conference. Heuristic: HEZ2[3]. The plot describes the relationship between
degree centrality and average degree centrality error.

29

6 Conclusion and future work

Over the years, the research community has proposed several methods with the aim of solving
the graph summarization problem. Graph summarization has various benefits which include for ex-
ample reduction of data volume and storage or speedup of graph algorithms and queries. Given its
advantages, graph summarization has extensive applications, including clustering, classification, com-
munity detection, outlier detection, pattern set mining, finding sources of infection in large graphs,
and visualization, among others. Despite the success and the wide applicability of summarization in
classical pairwise networks, we lacked a generalization of this concept to the framework of the higher-
order networks represented by hypergraph. In other words, to the best of our knowledge, there is no
prior practical solution to the problem of hypergraph summarization. In this thesis we introduced
a first algorithmic solution to the problem of hypergraph summarization. For this purpose, we ex-
tended a node aggregation-based graph summarization method to the case of higher order interactions
implemented with the hypergraph mathmatical formalism. At the hearth of our algorithm is the con-
densation of hypergraph nodes into summarized supernodes. We have identified as proper supernode
candidates the fundamental building blocks of networks: higher-order motifs. What is more, in order
to face the uncertainty which results from the deletion of some information from the original data
structure, we proposed formal probabilistic semantics for evaluating structural queries on hypergraph
summary. Motivated by the above, we also studied the problem of finding a ”good” hypergraph sum-
mary. Finally, we proposed the implementation of different heuristics to reshape our greedy solution
to perform better according to the different real world dataset peculiarities.

We are confident our proposed solution can open exiting new directions for applications in a
number of domains, pushed by the growing need of analyzing higher-order interacting systems.
First of all it would be interesting to test the performance of our solution on further datasets. Probably
this would lead to novel greedy heuristics in order to improve the results.
Our node aggregation-based solution can be extended to new approaches which do not take into
consideration higher-order network motifs to condense nodes into supernodes. Furthermore, we believe
that other graph summarization methods can be extended to the higher order domain.
An interesting research direction is to study the novel problem of hypergraph visualization and the
benefits of summarization in this regard.
Moreover, in this work we limit ourselves considering only static hypergraphs. However, in the real
world data collections are almost never static, new nodes and new edges can be added any time. It
would be useful to understand how our summary can handle dynamic insertions and dynamic deletions
of hyperedges and nodes.
The proposed solution does not guarantee output quality. In several applications it is important to be
able to rely on quality guarantees. In this regard we suggest to approach this problem starting from
the method proposed by Riondato et al. [22].

30

Bibliography

1]
2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. W. Anderson. More is different. Science, 1972.

F. Bacchus, A. Grove, J. Halpern, and D. Kohler. From statistical knowledge bases to degrees of
belief. A.1I., 1996.

L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x7 anonymized social
networks, hidden patterns, and structural steganography. WWW, 2007.

Federico Battiston, Giulia Cencetti, lacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and
dynamics. Physics Reports, 2020.

Philip S Chodrow. Configuration models of random hypergraphs and their applications.
arXiv:1902.09502, 2019.

Paul Erdos. On random graphs i. Publ. Math., 1959.

M. Hay, G. Miklau, D. Jensen, and P. Weis. Resisting structural re-identification in anonymized
social networks. VLDB, 2008.

Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. Vog: Summarizing and un-
derstanding large graphs. Proceedings of the SIAM international Conference on Data Mining
(SDM’1}4), 2014.

Vito Latora, Vincenzo Nicosia, and Giovanni Russo. Complex Networks Principles, Methods and
Applications. Cambridge university press, 2017.

Kristen LeFevre and Evimaria Terzi. Grass: Graph structure summarization. Proceedings of the
SIAM International Conference on Data Mining (SDM’10), 2010.

Jonathan M Levine, Jordi Bascompte, Peter B Adler, and Stefano Allesina. Beyond pairwise
mechanisms of species coexistence in complex communities. Nature, 2017.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and
applications: A survey. arXiv:1612.04883v3, 2018.

Quintino Francesco Lotito, Federico Musciotto, Alberto Montresor, and Federico Battiston.
Higher-order motif analysis in hypergraphs. Commun Phys, 2022.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M.
Hellerstein. Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proc. VLDB Endow, 2012.

Antonio Maccioni and Daniel J. Abadi. Scalable pattern matching over compressed graphs via
dedensification. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining
(KDD’16), 2016.

Yasir Mehmood, Nicola Barbieri, Francesco Bonchi, and Antti Ukkonen. Csi: Community-level
social influence analysis. Machine Learning and Knowledge Discovery in Databases, 2013.

31

[17]

[18]

[19]

[20]

[21]

[22]

Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat,
Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. Science, 2004.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: Simple building blocks of complex networks. Science, 2002.

A. Narayanan and V. Shmatikov. De-anonymizing social networks. IEEE Symposium on Security
and Privacy, 2009.

Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with bounded
error. Proceedings of the ACM Special Interest Group on Management of Data (SIGMOD’08),
2008.

Mark E. J. Newman and Michelle Girvan. Finding and evaluating community structure in net-
works. Phys. Rev., 2004.

Matteo Riondato, David Garcia-Soriano, and Francesco Bonchi. Graph summarization with
quality guarantees. Proceedings of the 2016 IEEFE 16th International Conference on Data Mining
(ICDM’14), 2014.

J. Rissanen. Modelling by the shortest data description. Automatica, 1978.

JElad Schneidman, Susanne Still, Michael J Berry, and William Bialek. Beyond pairwise mech-
anisms of species coexistence in complex communities. Phys. Rev. Lett., 2003.

Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large heterogeneous social networks by
semantic and structural abstraction. IEEE Trans. Vis. Comput. Graph, 2006.

The opte project. https://www.opte.org/.

Stanley Wasserman and Katherine Faust. Social network analysis : Methods and applications
(structural analysis in the social sciences). Cambridge University Press, 1994.

Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 2006.

Internet from wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Internet.
www.sci.unich.it (university of chieti-pescara). https://www.sci.unich.it/.

Quan Xiao. Node importance measure for scientific research collaboration from hypernetwork
perspective. Teh. Vjesn., 2016.

Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: A nonnegative
matrix factorization approach. Proceedings of the 6th ACM International Conference on Web
Search and Data Mining (WSDM’13), 2013.

32

Attachment A Algorithms

In this attachment we report the pseudocode of the algorithms which are discussed in the thesis.

Algorithm 1 Counting higher-order motifs of order 3

Input: a hypergraph H = (V, E)
Output: distribution of the frequency of the motifs of order 3
Let M be the motifs frequency hash map
for all hyperedge e of order 3 in £ do

V* < vertices of e

motif < ()

for e* € P(V*) do

if e* € F then
motif < motif Ue*
end if

end for

Let C,, be the isomorphism class of moti f

M[Cp]+ =1
: end for
: G < Discard all hyperedges of order 3 from H
. S« ESU(G,3)
: for all s = (V*, E*) € S do
if V* not already visited then

Let C,;, be the isomorphism class of s

MCh)+=1
end if
: end for

N N N = = = = e e e e e
R TaE S <Ho B LR ANl ol

33

Algorithm 2 Counting higher-order motifs of order 4

1: Input: a hypergraph H = (V, F)
2: OQutput: distribution of the frequency of the motifs of order 4
3: Let M be the motifs frequency hash map
4: for all hyperedge e of order 4 in £ do
V* < vertices of e
motif < ()
for e* € P(V*) do

if e* € E then

motif < motif Ue*

10: end if
11: end for
12: Let C,, be the isomorphism class of motif
132 M[Chl+ =1
14: end for
15: H < Discard all hyperedges of order 4 from H
16: for all hyperedge e of order 3 in £ do
17: Let N be the set of hyperedges adjacent to e
18: for all hyperedge n in ' do

19: V* < vertices of e Un

20: if |V*| =4 and V* not already visited then
21: motif < ()

22: for e* € P(V*) do

23: if e* € F then

24: motif < motif Ue*

25: end if

26: end for

27: Let C,, be the isomorphism class of moti f
28: MCpl+ =1

29: end if

30: end for

31: end for

32: H < Discard all hyperedges of order 3 from H
33: S+ ESU(G,4)

34: for all s = (V*,E*) € S do

35: if V* not already visited then

36: Let C,;, be the isomorphism class of s
37: M[Cp]+ =1

38: end if

39: end for

34

Algorithm 3 Hypergraph summarization baseline algorithm
1: Input: Hypergraph H = (X, E)
2: Output: Summarized hypergraph S

3:

4. #Execute higher-order motif analysis as explained in Chapter 3

5: for all higher-order motif motif in H do

6: #Check that the nodes in motif have not already been assigned to a supernode

7 #If the target nodes do not belong to any partition yet, we create a new supernode
8 if new_partition then

9: #supernode_category[i] indicates the category of supernode labeled i.

10: supernode_category[supernode_id] = category of motif motif

11: #supernodesli] is the set of nodes which belongs to the supernode identified with integer i
12: supernodes[supernode_id]=set/()

13:

14: for all node node in motif do

15: supernode_map[node] = supernode_id

16: supernodes[supernode_id++].add(node)

17: end for

18: end if

19: end for

20:

21: #lInsert all the singleton which do not belong to any supernode yet into new order one supernodes
22: for all node node in supernode_map do

23: if supernode_map[node]==-1 then

24: Add node to a new supernode with cardinality equal to one
25: end if

26: end for

27:

28: #Finally, we build summary hyperedges
29: for all edge e in F do
30: if 4 a node n € e which belongs to a different supernode w.r.t. the others then

31: #We add a new hyperedge to the summary hypergraph

32: hyperedge_dictionary = {} #Dictionary data structure: ids of the supernodes are the keys;
intersaction profiles are the values

33: for all node v in e do

34: v_supernode = supernode_map[v]

35: if v_supernode in hyperedge_dictionary then

36: hyperedge_dictionary[v_supernode]+=1

37: else

38: hyperedge_dictionary|v_supernode|=1

39: end if

40: summarized_hyperedges.append (hyperedge_dictionary)

41: end for

42: end if

43: end for

35

